Search results for "Hamiltonian Structural Analysis"
showing 4 items of 4 documents
Analysis of non-uniform torsion in curved incrementally launched bridges
2014
Abstract Incremental launching is a common and convenient methodology to build continuous girder bridges on several piers. Although it has mainly been applied to straight bridges with box sections, today it is also used for construction of horizontally curved bridges with concrete and composite steel–concrete closed or open sections like I-girders. In these cases the contribution of torsion to the stress state becomes of primary importance when the construction stages of these bridges are analysed. Moreover, the presence of thin-walled cross-sections, makes the analysis of non-uniform torsion fundamental when the angle of twist per unit length is not constant or warping is prevented in thos…
Symplectic analysis of thin-walled curved box girders with torsion, distortion and shear lag warping effects
2022
Shear lag effect and torsional and distortional warping can significantly affect the performance of thin-walled curved box girders used in modern bridge engineering. The structural behaviour of these bridges exhibits complexity due to coupled bending and torsion together with warping effects of non-uniform torsion, distortion and shear lag. A practical method of analysis, based on the symplectic approach, with the same perspective as the Higher Order Beam Theories, is presented for overcoming the difficulties of numerical approaches via the Finite Element Method. In this paper, the Hamiltonian Structural Analysis method implements the analysis of the shear lag effect together with non-unifo…
Unified theory for analysis of curved thin-walled girders with open and closed cross section through HSA method
2016
Abstract The behaviour of thin-walled structures is deeply influenced by non-uniform torsion and cross section distortion. In this paper the extension of the Hamiltonian Structural Analysis (HSA) Method to thin-walled straight and curved beams is presented. The proposed method solves the structural elastic problem of thin-walled beams through the definition of a Hamiltonian system composed of 1st order differential equations. The method allows engineers to solve the elastic problem by introducing the degrees of freedom and the corresponding compatibility equations, founding equilibrium equations in the variational form. The methodology is explained in the framework of the so-called Generali…
Influence of secondary torsion on curved steel girder bridges with box and I-girder cross-sections
2015
Steel curved girder bridges are largely used today in motorways and railways. They are often composed of thin-walled crosssections, entirely made of steel or with an upper concrete slab. The deck may have I-girders or box cross-sections: in any case curved girders are subjected to twisting moment, associated with bending, even for dead loads. Moreover, in thin-walled sections the influence of non-uniform torsion becomes sizable with respect to Saint Venant torsion, modifying the state of tangential stresses in the section and introducing axial stresses due to warping being prevented. Open sections of I-girder bridges are especially subject to these phenomena and warping can be significant n…